Transfer switch OHPC open or delayed transition
125 - 800 Amp

Description
The Cummins® Series OHPC PowerCommand® automatic transfer switch monitors the primary power source, signals the generator to start upon loss or destabilization of utility power and then automatically transfers the load to the generator. Once the utility power source becomes available and stable, the OHPC will return the load to the primary source.

Designed and constructed specifically for open transition operation, this clean sheet, revolutionary design incorporates the innovative High Endurance Mechanism (HEM) for uncompromising reliability with the proven PowerCommand microprocessor control. The PowerCommand control continuously monitors both power sources to ensure that all critical parameters are within acceptable range before performing an open transition transfer. Once the parameters are within range the OHPC will transfer in open transition mode.

Features
UL-listed 30-cycle ratings - OHPC is listed for short time ratings of 25,000 amps at 10 cycles for 125-260 amps, 30,000 amps at 30 cycles for 300-600 amps, and 42,000 amps at 30 cycles for 800 amps.

PowerCommand control - A standard, fully featured microprocessor-based control. Software-enabled features, settings, and adjustments are available for ease of setup and accuracy. Optically isolated logic inputs and high isolation transformers for AC power inputs provide high voltage surge protection.

Selectable transfer method - The switch automatically transfers the load back either by using the fast transfer or by using the delayed transition mode of operation. When operated in the sync-check function mode, the controller can adjust the frequency of the generator by 0.5 Hz. This avoids the long transfer times often associated with in phase monitor-based products.

Manual operation - Manual operating handles and stored energy transfer mechanism allow effective, manual operation of the OHPC. An external operator is available as an option for dead front manual operation. Manual operation of the OHPC can only be performed in the open transition transfer mode.

Main contacts - Heavy-duty silver allow contacts and multi-leaf arc chutes are rated for total system transfer.

Easy service/access - Plug connections, door mounted controls, ample access space, and compatible terminal markings allow for easy service.

Product lines, accessories and services - Cummins offers a wide range of accessories and services to suit your requirements.

Main contacts - Heavy-duty silver allow contacts and multi-leaf arc chutes are rated for total system transfer.

Warranty and service - Backed by a comprehensive warranty and worldwide distributor network.
Transfer switch mechanism

- OHPC has earned the industry’s highest UL-listed short-time ratings. At 480 volts, 125-260 amp switches are rated at 25,000 for 10 cycles, 300-600 are rated at 30,000 for 30 cycles, and 800 is rated at 42,000 amps for 30 cycles.
- Blow-on contactor allows for high survivability in fault current conditions
- Simultaneous break-before-make contactor action is used for 2-pole, 3-pole, and 4-pole switches. On 4-pole/switched neutral switches, this action also prevents the objectionable ground currents and nuisance ground fault tripping that can result from overlapping neutral designs.
- A mechanical interlock prevents simultaneous closing of normal and emergency contacts. The interlock prevents source-to-source connections if the switch is manually operated.
- Electrical interlocks prevent simultaneous closing signals to normal and emergency contacts and interconnection of normal and emergency sources through the control wiring.
- Long-life, high pressure, silver alloy contacts resist burning and pitting. Separate arcing surfaces further protect the main contacts. Contacts are mechanically held in both normal and emergency positions for reliable, quiet operation.
- Superior arc interruption is accomplished through multiple leaf arc chutes that cool and quench the arcs. Barriers separate the phases and prevent inter-phase flashover.
- OHPC transfer switches are equipped with permanently attached operating handles and quick-break, quick-make contact mechanisms that are suitable for manual operation. An external manual operator is available as an option for dead front operation.

Specifications

<table>
<thead>
<tr>
<th>Voltage rating</th>
<th>Transfer switches up to 600 VAC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amperage rating</td>
<td>Transfer switches are rated from 125 to 800 amperes.</td>
</tr>
<tr>
<td>Frequency rating</td>
<td>Transfer switches are rated to operate at 50 or 60 Hertz.</td>
</tr>
<tr>
<td>Neutral bar</td>
<td>A full current-rated neutral bar with lugs is standard on enclosed 2 and 3-pole transfer switches.</td>
</tr>
<tr>
<td>Auxiliary contacts</td>
<td>Two switch position contacts rated at 10A Continuous and 250 VAC maximum (one for each source) are provided for customer use.</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>-40 °F (-40 °C) to 140 °F (60 °C)</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-40 °F (-40 °C) to 140 °F (60 °C)</td>
</tr>
<tr>
<td>Humidity</td>
<td>Up to 95% relative, non-condensing</td>
</tr>
<tr>
<td>Altitude</td>
<td>Up to 10,000 ft (3,000 m) without de-rating</td>
</tr>
<tr>
<td>Surge withstand ratings</td>
<td>Control system surge-tested for location category B3, per IEEE C62.41 and IEEE C62.45. Also meets European standard EN61000-4-5.</td>
</tr>
<tr>
<td>Total transfer time (source to-source)</td>
<td>Will not exceed 6 cycles at 60 Hz when operated as an in phase monitor based open transition transfer switch</td>
</tr>
</tbody>
</table>
HEM power cassette

- Cassette design ensures that all phases and neutral are switched at the same speed, providing true four pole operation
- Encapsulated contactor design increases phase to phase isolation and reduces possibility of arcing between phases
- New design eliminates a common failure point in many transfer switches by not using electrical connections made of braided metal in the mechanism's current path
- Simple design has fewer parts reducing the mechanism's potential for failure

The innovative design of the High Endurance Mechanism

The High Endurance Mechanism (HEM) is designed to ride through a fault condition undamaged, retaining its capability to carry 100% of its rated load. Magnetic forces developed during a fault cause a conventional transfer switch’s contacts to blow open, producing destructive arcing that often results in extensive internal damage to the switch. Typically after a conventional switch experiences a fault, its contacts, arc chutes and in some cases its controller needs to be replaced. The HEM uses that same magnetic energy to hold the contacts closed during a fault, practically eliminating arcing, contact damage, and performance degradation. That means the HEM does not require contact maintenance to continue to carry rated current without overheating. The HEM can survive multiple faults of the magnitude listed on the nameplate as the Withstand and Closing Current Ratings (WCR). This novel blow-on technology means that there will be no costly repairs or inconvenient downtime after a fault.
PowerCommand microprocessor control

PowerCommand controls are microprocessor based and developed specifically for automatic transfer switch operation. The control provides features and options useful for most applications. Flash memory is used to store control settings. The contents of the memory are not lost even if power to the controller is lost. There is also an on-board battery to maintain the real-time clock setting and the engine start time delay. A choice of two control packages allows flexibility for determining the most suitable level of control for a given application:

Level 1 control
- **Open transition** (in-phase transition)
- **Delayed transition** (programmed transition)
- **Utility-to-genset applications**
- **Software adjustable time delays:**
 - Engine start: 0 to 15 sec
 - Transfer normal to emergency: 0 to 120 sec
 - Retransfer emergency to normal: 0 to 30 min
 - Engine stop: 0 to 30 min
 - Programmed transition: 0 to 60 sec
- **Undervoltage sensing** - 3-phase normal, 1-phase emergency
 - Pickup: 85% to 98% of nominal voltage
 - Dropout: 75% to 98% of pickup setting
 - Dropout time delay: 0.1 to 1.0 sec
- **Overvoltage sensing** - 3-phase normal, 1-phase emergency
 - Dropout: 105% to 135% of nominal voltage
 - Pickup: 95% to 99% of dropout setting
 - Dropout time delay: 0.5 to 120 sec
- **Over/under frequency sensing**
 - Pickup: ±5% to ±20% of nominal frequency
 - Dropout: ±1% beyond pickup
 - Dropout time delay: 0.1 to 15.0 sec
- **Programmable genset exerciser** - One event/schedule with or w/o load
- **Basic indicator panel**
 - Source available/connected LED indicators
 - Test/exercise/bypass buttons
 - Digital display - standard
 - Analog bargraph metering - optional
- **Date/time-stamped event recording** - 50 events
- **Load sequencing** (optional with network communications module)

Level 2 control
- **Open transition** (in-phase transition)
- **Delayed transition** (programmed transition)
- **Utility-to-genset applications**
- **Utility-to-utility applications**
- **Genset-to-genset applications**
- **Software adjustable time delays:**
 - Engine start: 0 to 120 sec
 - Transfer normal to emergency: 0 to 120 sec
 - Retransfer emergency to normal: 0 to 30 min
 - Engine stop: 0 to 30 min
 - Programmed transition: 0 to 60 sec
- **Undervoltage sensing** - 3-phase normal, 3-phase emergency
 - Pickup: 85% to 98% of nominal voltage
 - Dropout: 75% to 98% of pickup setting
 - Dropout time delay: 0.5 to 120 sec
- **Overvoltage sensing** - 3-phase normal, 3-phase emergency
 - Dropout: 105% to 135% of nominal voltage
 - Pickup: 95% to 99% of dropout setting
 - Dropout time delay: 0.5 to 120 sec
- **Over/under frequency sensing**
 - Pickup: ±5% to ±20% of nominal frequency
 - Dropout: ±1% beyond pickup
 - Dropout time delay: 0.1 to 15.0 sec
- **Voltage imbalance sensing**
 - Dropout: 2% to 10%
 - Pickup: 90% of dropout
 - Time delay: 2.0 to 20.0 sec
- **Phase rotation sensing**
 - Time delay: 100 msec
- **Loss of single phase detection**
 - Time delay: 100 msec
- **Programmable genset exerciser** - Eight events/schedule with or w/o load
- **Basic indicator panel**
 - Source available/connected LED indicators
 - Test/exercise/bypass buttons
 - Digital display - standard
 - Analog bargraph metering - optional
- **Date/time-stamped event recording** - 50 events
- **Load sequencing** (optional with network communications module)
Time-delay functions

Engine start: Prevents nuisance genset starts in the event of momentary power system variation or loss. Not included in utility-to-utility systems.

Transfer normal to emergency: Allows genset to stabilize before application of load. Prevents power interruption if normal source variation or loss is momentary. Allows staggered transfer of loads in multiple transfer switch systems.

Retransfer emergency to normal: Allows the utility to stabilize before retransfer of load. Prevents needless power interruption if return of normal source is momentary. Allows staggered transfer of loads in multiple transfer switch systems.

Engine stop: Maintains availability of the genset for immediate reconnection in the event that the normal source fails shortly after retransfer. Allows gradual genset cool down by running unloaded. Not included in utility-to-utility systems.

Delayed (programmed) transition: Transfers load to neutral position, disconnected from sources, to allow inductive load voltages to decay.

User interfaces

Basic interface panel
LED indicators provide at-a-glance source and transfer switch status for quick summary of system conditions. Test and Override buttons allow delays to be bypassed for rapid system checkout.

Digital display (M018)
The digital display provides a convenient method for monitoring load power conditions, adjusting transfer switch parameters, monitoring PowerCommand Network status, or reviewing transfer switch events. Password protection limits access to adjustments to authorized personnel. The digital display comes standard with the Level 2 PowerCommand microprocessor control, and is optional with the Level 1 Control.

User interface options

Front panel security key (M017)
Front panel access can be locked out using this option. Prevents unauthorized transfers or testing. Prevents unauthorized adjustments via the digital display.

Analog bar graph meter (D009)
An LED bar graph display provides easy to read indication for Normal and Emergency voltages and frequencies, load currents, power factor, and kilowatts. Green, amber, and red LED's provide at-a-glance indication of system acceptability. Available as an option with the Level 2 PowerCommand microprocessor control.

External operation handle (N038)
Dead-front manual operating handle for safe manual operation. Can be operated while the switch is energized. Manual operation of the OHPC can only be performed in the open transition transfer mode.

Control options

Relay signal module (M023)
Provides an adjustable transfer pre-signal time delay of 0 to 60 seconds to prevent interruption of power during elevator operation. Relay outputs include: Source 1 connected and Available, Source 2 Connected and Available, Not in Auto, Test/Exercise Active, Failed to Disconnect, Failed to Synchronize, Failed to transfer/retransfer, and Transfer pre-signal (elevator signal).

Loadshed (M007)
Removes the load from the emergency power source by driving the transfer switch to the neutral position when signalled remotely. Transfers load back to the emergency source when the signal contacts open. Immediate retransfer to the preferred source when it is re-established.

PowerCommand network interface (M031)
Provides connection to the PowerCommand network. LonWorks® compatible for integration into customer monitoring strategy.

Load power and load current monitoring (M022)
Measures load phase and neutral, current, power factor, real power (kW) and apparent power (kVA). Warns of excessive neutral current resulting from unbalanced or nonlinear loads. Minimum detectable current level is 3%.

* Note: Some options may not be available on all models - consult factory for availability.
UL withstand and closing ratings

The transfer switches listed below must be protected by circuit breakers or fuses. Referenced drawings include detailed listings of specific breakers or fuse types that must be used with the respective transfer switches. Consult with your distributor/dealer to obtain the necessary drawings. Withstand and Closing Ratings (WCR) are stated in symmetrical RMS amperes.

UL-Listed specific breaker ratings

<table>
<thead>
<tr>
<th>Transfer switch ampere</th>
<th>WCR @ volts max with specific manufacturers MCCBs</th>
<th>Max MCCB ratings</th>
<th>Drawing reference</th>
<th>With specific current limiting breakers (CLB)</th>
<th>Max CLB rating</th>
<th>Drawing reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>125, 150, 225, 260</td>
<td>42,000 @ 480</td>
<td>500 A</td>
<td>098-7898</td>
<td>200,000 @ 480</td>
<td>500 A</td>
<td>098-7900</td>
</tr>
<tr>
<td></td>
<td>30,000 @ 600</td>
<td></td>
<td></td>
<td>200,000 @ 600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300, 400, 600</td>
<td>65,000 @ 480</td>
<td>1200 A</td>
<td>098-7899</td>
<td>200,000 @ 480</td>
<td>1200 A</td>
<td>098-7901</td>
</tr>
<tr>
<td></td>
<td>50,000 @ 600</td>
<td></td>
<td></td>
<td>200,000 @ 600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>85,000 @ 480</td>
<td>1400 A</td>
<td>098-8164</td>
<td>200,000 @ 480</td>
<td>1400 A</td>
<td>098-8165</td>
</tr>
<tr>
<td></td>
<td>65,000 @ 600</td>
<td></td>
<td></td>
<td>200,000 @ 600</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UL-Listed fuse protection ratings

<table>
<thead>
<tr>
<th>Transfer switch ampere</th>
<th>WCR @ volts max. with current limiting fuses</th>
<th>Max fuse, size and type</th>
<th>Drawing reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>125, 150, 225, 260</td>
<td>200,000 @ 600</td>
<td>400 A class J, T</td>
<td>098-7898</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200 A class RK1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 A class RK5</td>
<td></td>
</tr>
<tr>
<td>300, 400, 600</td>
<td>200,000 @ 600</td>
<td>1200 A class, L, T</td>
<td>098-7899</td>
</tr>
<tr>
<td></td>
<td></td>
<td>600 A class, J, RK1, RK5</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>200,000 @ 600</td>
<td>2000 A class L</td>
<td>098-8164</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2000 A class T</td>
<td></td>
</tr>
</tbody>
</table>

UL-Listed 3 cycle and short-time ratings

<table>
<thead>
<tr>
<th>Transfer switch ampere</th>
<th>WCR @ volts max 3 cycle rating</th>
<th>Short-time ratings @ 480 volts</th>
<th>Max MCCB rating</th>
<th>Drawing reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>125, 150, 225, 260</td>
<td>25,000 @ 480</td>
<td>25,000 for 10 cycles</td>
<td>500 A</td>
<td>0098-7898</td>
</tr>
<tr>
<td></td>
<td>18,000 @ 600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300, 400, 600</td>
<td>35,000 @ 480</td>
<td>30,000 for 30 cycles</td>
<td>1200 A</td>
<td>0098-7899</td>
</tr>
<tr>
<td></td>
<td>22,000 @ 600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>65,000 @ 480</td>
<td>42,000 for 30 cycles</td>
<td>1400 A</td>
<td>0098-8164</td>
</tr>
<tr>
<td></td>
<td>65,000 @ 600</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Enclosures

The wall-mounted transfer switch and control are mounted in a key-locking enclosure. Wire bend space complies with 2005 NEC.

Dimensions - transfer switch in UL type 1 enclosure

<table>
<thead>
<tr>
<th>Amp rating</th>
<th>Height in</th>
<th>Height mm</th>
<th>Width in</th>
<th>Width mm</th>
<th>Depth Door closed in</th>
<th>Depth Door closed mm</th>
<th>Depth Door open in</th>
<th>Depth Door open mm</th>
<th>Weight 3-pole type lb</th>
<th>Weight 3-pole type kg</th>
<th>Outline drawing</th>
</tr>
</thead>
<tbody>
<tr>
<td>125, 150, 225, 260</td>
<td>49</td>
<td>1245</td>
<td>25.05</td>
<td>635</td>
<td>19.6</td>
<td>497</td>
<td>44</td>
<td>1118</td>
<td>231</td>
<td>105</td>
<td>0500-3504</td>
</tr>
<tr>
<td>300, 400, 600</td>
<td>60</td>
<td>1524</td>
<td>30.00</td>
<td>762</td>
<td>19.6</td>
<td>497</td>
<td>49</td>
<td>1245</td>
<td>288</td>
<td>131</td>
<td>0500-3383</td>
</tr>
<tr>
<td>800</td>
<td>72</td>
<td>1828</td>
<td>34.40</td>
<td>875</td>
<td>21.0</td>
<td>532</td>
<td>53</td>
<td>1335</td>
<td>411</td>
<td>186</td>
<td>0500-3826</td>
</tr>
</tbody>
</table>

Dimensions - transfer switch in UL type 3R, 4, 4x, or 12 enclosure

<table>
<thead>
<tr>
<th>Amp rating</th>
<th>Height in</th>
<th>Height mm</th>
<th>Width in</th>
<th>Width mm</th>
<th>Depth Door closed in</th>
<th>Depth Door closed mm</th>
<th>Depth Door open in</th>
<th>Depth Door open mm</th>
<th>Weight Cabinet type lb</th>
<th>Weight Cabinet type kg</th>
<th>Outline drawing</th>
</tr>
</thead>
<tbody>
<tr>
<td>125, 150, 225, 260</td>
<td>51.5</td>
<td>1309</td>
<td>25.4</td>
<td>645</td>
<td>20.1</td>
<td>510</td>
<td>44.5</td>
<td>1130</td>
<td>231</td>
<td>105</td>
<td>3R, 4, 4x, 12</td>
</tr>
<tr>
<td>300, 400, 600</td>
<td>62.5</td>
<td>1588</td>
<td>30.4</td>
<td>773</td>
<td>20.1</td>
<td>510</td>
<td>49.5</td>
<td>1256</td>
<td>288</td>
<td>131</td>
<td>3R, 4, 4x, 12</td>
</tr>
<tr>
<td>800</td>
<td>72</td>
<td>1828</td>
<td>34.4</td>
<td>875</td>
<td>21.0</td>
<td>532</td>
<td>53.0</td>
<td>1335</td>
<td>411</td>
<td>186</td>
<td>3R, 4, 4x, 12</td>
</tr>
</tbody>
</table>

Transfer switch lug capacities

All lugs accept copper or aluminum wire unless indicated otherwise. Adapters that will accept compression lugs are available for 5/16", 3/8", 1/2" and 5/8" mounting hardware. Compression lugs are not furnished. Lugs are listed in the Installation Manual.

<table>
<thead>
<tr>
<th>Amp rating</th>
<th>Cables per phase</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>125, 150</td>
<td>1</td>
<td>#10 AWG-3/0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>#10 AWG-1/0</td>
</tr>
<tr>
<td>225, 260</td>
<td>1</td>
<td>#6 AWG - 400 MCM</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>#6 AWG - 4/0</td>
</tr>
<tr>
<td>300, 400</td>
<td>1</td>
<td>1/0 - 750 MCM</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>#6 AWG - 400 MCM</td>
</tr>
<tr>
<td>600</td>
<td>2</td>
<td>#4 AWG - 600 MCM</td>
</tr>
<tr>
<td>800</td>
<td>4</td>
<td>#2 AWG - 600 MCM</td>
</tr>
</tbody>
</table>
Submittal detail – options

Amperage ratings:
- 125
- 150
- 225
- 260
- 300
- 400
- 600
- 800

Voltage ratings:
- R020 120
- R038 190
- R021 208
- R022 220
- R023 240
- R024 380
- R025 416
- R035 440
- R026 480
- R027 600

Pole configuration:
- A065 Poles - 2 (solid neutral)
- A028 Poles - 3 (solid neutral)
- A029 Poles - 4 (switched neutral)

Frequency:
- A044 60 Hertz
- A045 50 Hertz

Application:
- A035 Utility to genset
- A036 Utility to utility
- A037 Genset to genset

System Options:
- A041 Single phase, 2-wire or 3-wire
- A042 Three phase, 3-wire or 4-wire

Enclosure:
- B001 Type 1: general purpose indoor (similar to IEC type IP30)
- B002 Type 3R: intended for outdoor use (dustproof and rainproof) (similar to IEC type IP34)
- B003 Type 4: indoor or outdoor use (watertight) (similar to IEC type IP65)
- B004 Open construction: no enclosure - includes automatic transfer switch and controls
- B010 Type 12: indoor use, dust-tight and drip-tight (similar to IEC type IP61)
- B025 Type 4x: stainless steel enclosure

Standards:
- A046 UL 1008/CSA certification
- A064 NFPA 20 compliant
- A080 Seismic certification

Controls
- C023 Switch control - Level 1
- C024 Switch control - Level 2

Control options
- M017 Security key - front panel
- M018 Display - digital
- M031 Communications - LonWorks network communications module
- M022 Load monitoring (min current level 3%)
- M023 Module - relay signal

Meters
- D009 Digital bar graph meters

Battery chargers
- K001 2 Amps, 12/24 Volts
- KB59 15 Amps, 12 Volts
- KB60 12 Amps, 24 Volts

Auxiliary relays
- Relays are UL Listed and factory installed. All relays provide (2) normally open and (2) normally closed isolated contacts rated 10A @ 600 VAC. Relay terminals accept (1) 18 Ga .to (2) 12 Ga. wires per terminal.
 - L101 24 VDC coil - installed, not wired (for customer use).
 - L102 24 VDC coil - emergency position - relay energized when ATS in source 2 (emergency) position.
 - L103 24 VDC coil - normal position - relay energized when ATS in source 1 (normal) position
 - L201 12 VDC coil installed, not wired
 - L202 12 VDC coil - emergency position - relay energized when ATS in source 2 (emergency) position
 - L203 12 VDC coil - normal position - relay energized when ATS in source 1 (normal) position

Miscellaneous options
- M033 Terminal block - 30 points (not wired)
- M007 Load shed - from emergency - drives switch to neutral position when remote signal contact closes
- N038 Manual external operating handle

Optional lug kits
- N008 Terminal lugs - cable
- N030 Lug adapters - compression (5/16 Stud)
- N031 Lug adapters - compression (3/8 Stud)
- N032 Lug adapters - compression (1/2 Stud)
- N043 Lug adapters - compressions (5/8 Stud)

Warranty
- G002 One yr basic
- G004 Two yr comprehensive
- G006 Five yr basic
- G007 Five yr comprehensive
- G008 Ten year major components
Certifications

<table>
<thead>
<tr>
<th>UL</th>
<th>All switches are UL 1008 listed and labelled with UL Type Rated cabinets and UL Listed CU-AL terminals.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEMA</td>
<td>All switches comply with NEMA ICS 10.</td>
</tr>
<tr>
<td>NEC</td>
<td>Suitable for use in emergency, legally required and Standby applications per NEC 700, 701 and 702.</td>
</tr>
<tr>
<td>IEEE</td>
<td>All switches comply with IEEE 446 - Recommended Practice for Emergency and Standby Power Systems.</td>
</tr>
<tr>
<td>NFPA</td>
<td>All switches comply with NFPA 70, 99 and 110.</td>
</tr>
<tr>
<td>ISO 9001</td>
<td>This transfer switch is designed and manufactured in facilities certified to ISO9001.</td>
</tr>
</tbody>
</table>