Gaseous Fuel Generator Set
GTA855 CC Engine Series

Specification Sheet
Model GFBA EPA SI NSPS Compliant Capable

KW(KVA) @ 0.8 P.F.
Compression Ratio 60 HZ-1800 RPM
8.5:1 (note 1) 175 (218)
8.5:1 (note 2) 165 (206)

Fuel Application Guide
Compression Ratio 8.5:1
Dry Processed Natural Gas Yes
Propane (HD-5) Yes

All gases such as field gas, digester and sewage gas will require an analysis of the specified gas and pre-approval from CNGE. Consult your Cummins Distributor for details.

Features

Cummins Heavy-Duty Engine - Rugged 4-cycle industrial spark ignited engine delivers reliable power, low emissions, and fast response to load changes.

Alternator - Severalalternator sizes offer selectable motor-starting capability with low reactance 2/3 pitch windings, low waveform distortion with non-linear loads, fault-clearing short-circuit capability, and class H insulation. The alternator electrical insulation system is UL1446 Recognized.

Control Systems - The PowerCommand electronic control is standard equipment and provides total genset system integration, including automatic remote starting/ stopping, precise voltage regulation, alarm and status message display, AmpSentry™ protection, output metering, auto-shutdown at fault detection, and NFPA 110 compliance. PowerCommand control is Listed to UL508.

Cooling System - Standard cooling package provides reliable running at the rated power level, at up to 100°F ambient temperature.

Housings - Optional weather-protective housings are available.

Certifications - Generators are designed, manufactured, tested, and certified to relevant UL, NFPA, ISO, IEC, and CSA standards.

Warranty and Service - Backed by a comprehensive warranty and worldwide distributor service network.

* Adequate fuel pressure and volume must be provided. Engines must be equipped with a functioning jacket water heater.

Description

The Cummins NPower GF-series commercial generator set is a fully integrated power generation system providing optimum performance, reliability, and versatility for stationary standby or prime power applications.

A primary feature of the GF GenSet is strong motor-starting capability and fast recovery from transient load changes. The torque-matched system includes a heavy-duty Cummins 4-cycle spark ignited engine, an AC alternator with high motor-starting kVA capacity, and an electronic voltage regulator with three phase sensing for precise regulation under steady-state or transient loads. The GF GenSet accepts 100% of the nameplate standby rating in one step. *

The standard PowerCommand® digital electronic control is an integrated system that combines engine and alternator controls for high reliability and optimum GenSet performance.

Optional weather-protective housings and coolant heaters shield the generator set from extreme operating conditions.

Environmental concerns are addressed by low exhaust emission engines, sound-attenuated housings, and exhaust silencers. A wide range of options, accessories, and services are available, allowing configuration to your specific power generation needs.
Generator Set

The general specifications provide representative configuration details. Consult the outline drawing for installation design.

Specifications – General

See outline drawing for installation design specifications.

- **Unit Width, in (mm)**: 66" (Open Set)
- **Unit Height, in (mm)**: 79" (Open Set)
- **Unit Length, in (mm)**: 147" (Open Set)
- **Unit Dry Weight, lb (kg)**: 7300
- **Rated Speed, rpm**: 1800
- **Voltage Regulation, No Load to Full Load**: ±1.0%
- **Random Voltage Variation**: ±1.0%
- **Frequency Regulation**: Isochronous
- **Random Frequency Variation**: ±0.5%
- **Radio Frequency Interference**: Optional PMG excitation operates in compliance with BS800 and VDE level G and N. Addition of RFI protection kit allows operation per MIL-STD-461 and VDE level K.

Rating Definitions

Standby Rating based on: Applicable for supplying emergency power for the duration of normal power interruption. No sustained overload capability is available for this rating. (Equivalent to Fuel Stop Power in accordance with ISO3046, AS2789, DIN6271 and BS5514). Nominally rated.

Site Derating Factors

Engine power available up to 3000` (m) at ambient temperatures up to 104°F. Above 3000` (m) derate at 4% per 1000 ft (305 m), and 1% per 10°F (2% per 11°C) above 104°F.

1) Data represents gross engine performance capabilities obtained and corrected in accordance with SAEJ1349 conditions of 29.61 in. Hg,(100KPa) barometric pressure (300 ft. (91m) altitude), 77°F (25°C) inlet air temperature, and 0.30 in Hg,(100KPa) water vapor pressure using dry processed natural gas fuel with 905 Btu per standard cubic foot (33.72 kl) lower heating value. Deration may be required due to altitude, temperature or type of fuel. Consult your local Cummins Distributor for details.

2) **FUEL SYSTEM**

- Standard Carburetor – IMPCO Make
- Low Pressure Dry Processed Natural Gas – (905 BTU/ft² L.H.V.)
- Running Pressure to Carburetor (After Regulation) – in. H₂O (mm H₂O) ……5 ~ 7 (127~177)
- Running Pressure to Engine Mounted Regulator – in. H₂O (mm H₂O) ……15 ~ 20 (381 ~ 508)
- Minimum Gas Supply Pipe Size @ Engine – in. (mm)………100 (690)

The preceding pipe sizes are only suggestions and piping may vary with temperatures, distance from fuel supply and application of local codes. Gas must be available at adequate volume and pressure for engine at the regulator.
Engine

Cummins heavy-duty spark ignited engines use advanced combustion technology for reliable and stable power, low emissions, and fast response to sudden load changes.

Electronic governing is standard for applications requiring constant (isochronous) frequency regulation such as Uninterruptible Power Supply (UPS) systems, non-linear loads, or sensitive electronic loads. Optional coolant heaters are recommended for all emergency standby installations or for any application requiring fast load acceptance after start-up.

Specifications – Engine

Base Engine: Cummins Model GTA855 CC
Displacement in³ (L): 855 (14)
Overspeed Limit, rpm: 2100
Regenerative Power, kW: -
Cylinder Block Configuration: Cast iron with replaceable wet cylinder liners
Cranking Current: 550 amps at ambient temperature of 32°F (0°C)
Battery Charging Alternator: 37 amps
Starting Voltage: 24-volt, negative ground
Lube Oil Filter Types: Single spin-on canister-combination full flow with bypass
Standard Cooling System: 104°F (40°C) ambient radiator

Fuel

<table>
<thead>
<tr>
<th>Fuel Consumption (Approximate) kW CFH</th>
<th>STANDBY</th>
<th>STANDBY</th>
<th>STANDBY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>88</td>
<td>131</td>
<td>175</td>
</tr>
<tr>
<td>3/4</td>
<td>1650</td>
<td>2320</td>
<td>2695</td>
</tr>
<tr>
<td>Full</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cooling

Heat Rejection to Coolant* BTU/min	12,601	221 kW
Heat Rejection to Room BTU/min	1423	25 kW
Coolant Capacity (with radiator)* USG	20	76 L
Coolant Flow Rate GPM	139	9 L/Sec
Maximum Coolant Friction Head PSI	5	34 kPa
Maximum Coolant Static Head Ft	60	18 m
Radiator Fan Load HP	28	21 kW

Air

Combustion Air cfm	818	386 L/sec
Maximum Air Cleaner Restriction In H2O	15	381 mm H2O
Alternator Cooling Air cfm	2100	60 cu m/min
Radiator Cooling Air cfm	33750	15928 L/sec
Maximum Restriction at In H2O	0.5	12.7 mm H2O

Exhaust

Gas Flow (Full Load) cfm	2209	1043 L/sec
Gas Temperature °F	1350	732 °C
Maximum Back Pressure In H2O	2	51 mm Hg

Engine

Gross Engine Power Output Hp	300	224 kWm
BMEP psi	173	1100 kPa
Piston Speed ft/min	1800	9.14 m/s

* Jacket water only. Contact factory for aftercooler heat rejections, capacity and coolant flows.
Alternator

Several alternators are available for application flexibility based on the required motor-starting kVA and other requirements. Larger alternator sizes have lower temperature rise for longer life of the alternator insulation system. In addition, larger alternator sizes can provide a cost-effective use of engine power in across-the-line motor-starting applications and can be used to minimize voltage waveform distortion caused by non-linear loads.

Single-bearing alternators couple directly to the engine flywheel with flexible discs for drivetrain reliability and durability. No gear reducers or speed changers are used. Two-thirds pitch windings eliminate third-order harmonic content of the AC voltage waveform and provide the standardization desired for paralleling of generator sets. The standard excitation system is a self (shunt) excited system with the voltage regulator powered directly from the generator set output.

Alternator Application Notes

Separately Excited Permanent Magnet Generator (PMG) System - This option uses an integral PMG to supply power to the voltage regulator. A PMG system generally has better motor-starting performance, lower voltage dip upon load application, and better immunity from problems with harmonics in the main alternator output induced by non-linear loads. This option is recommended for use in applications that have large transient loads, sensitive electronic loads (especially UPS applications), harmonic content, or that require sustained short-circuit current (sustained 3-phase short circuit current at approximately 3 times rated for 10 seconds).

Alternator Sizes - On any given model, various alternator sizes are available to meet individual application needs. Alternator sizes are differentiated by maximum winding temperature rise, at the generator set standby or prime rating, when operated in a 40°C ambient environment. Available temperature rises range from 80°C to 150°C. Not all temperature rise selections are available on all models. Lower temperature rise alternators have higher motor-starting kVA, lower voltage dip upon load application, and they are generally recommended to limit voltage distortion and heating due to harmonics induced by non-linear loads.

Alternator Space Heater - is recommended to inhibit condensation.

Available Output Voltages

<table>
<thead>
<tr>
<th>Three Phase Reconnectable</th>
<th>Single Phase Non-Reconnectable</th>
<th>Three Phase Non-Reconnectable</th>
</tr>
</thead>
<tbody>
<tr>
<td>120/208</td>
<td>120/240</td>
<td>220/380</td>
</tr>
<tr>
<td>127/220</td>
<td></td>
<td>347/600</td>
</tr>
<tr>
<td>139/240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120/240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>240/416</td>
<td></td>
<td></td>
</tr>
<tr>
<td>254/440</td>
<td></td>
<td></td>
</tr>
<tr>
<td>277/480</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Specifications – Alternator

<table>
<thead>
<tr>
<th>Design</th>
<th>Brushless, 4-pole, drip-proof revolving field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stator</td>
<td>2/3 pitch</td>
</tr>
<tr>
<td>Rotor</td>
<td>Direct-coupled by flexible disc</td>
</tr>
<tr>
<td>Insulation System</td>
<td>Class H per NEMA MG1-1.65</td>
</tr>
<tr>
<td>Standard Temperature Rise</td>
<td>125°C standby</td>
</tr>
<tr>
<td>Exciter Type</td>
<td>PMG</td>
</tr>
<tr>
<td>Phase Rotation</td>
<td>A (U), B (V), C (W)</td>
</tr>
<tr>
<td>Alternator Cooling</td>
<td>Direct-drive centrifugal blower</td>
</tr>
<tr>
<td>AC Waveform Total Harmonic Distortion</td>
<td><5% total no load to full linear load</td>
</tr>
<tr>
<td>Telephone Influence Factor (TIF)</td>
<td><50 per NEMA MG1-22.43.</td>
</tr>
<tr>
<td>Telephone Harmonic Factor (THF)</td>
<td><3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voltage Ranges</th>
<th>80°C Alternator</th>
<th>105°C Alternator</th>
<th>125°C Alternator</th>
</tr>
</thead>
<tbody>
<tr>
<td>120/240*</td>
<td>347/600</td>
<td>347/600</td>
<td>347/600</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Motor Starting</th>
<th>Maximum kVA (90% Sustained Voltage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80°C Alternator</td>
<td>904</td>
</tr>
<tr>
<td>105°C Alternator</td>
<td>904</td>
</tr>
<tr>
<td>125°C Alternator</td>
<td>904</td>
</tr>
<tr>
<td>904</td>
<td>920</td>
</tr>
<tr>
<td>920</td>
<td>920</td>
</tr>
<tr>
<td>920</td>
<td>920</td>
</tr>
<tr>
<td>920</td>
<td>920</td>
</tr>
<tr>
<td>920</td>
<td>920</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Feature Code</th>
<th>Alternator Data Sheet Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>80°C Alternator</td>
<td>301b</td>
</tr>
<tr>
<td>105°C Alternator</td>
<td>301b</td>
</tr>
<tr>
<td>125°C Alternator</td>
<td>212d</td>
</tr>
<tr>
<td>Full Load Current</td>
<td>120/208 127/220 139/240 220/380 240/416 254/440 277/480 347/600 120/240*</td>
</tr>
<tr>
<td>(Amps @ Standby Rating)</td>
<td>607 574 526 332 303 287 263 210 153</td>
</tr>
</tbody>
</table>
Control System

PowerCommand Control with AmpSentry™ Protection

- The PowerCommand Control is an integrated generator set control system providing governing, voltage regulation, engine protection, and operator interface functions.
- PowerCommand Controls include integral AmpSentry protection. AmpSentry provides a full range of alternator protection functions that are matched to the alternator provided.
- Controls provided include Battery monitoring and testing features, and Smart-Starting control system.
- InPower PC-based service tool available for detailed diagnostics.
- Available with Echelon LonWorks™ network interface.
- NEMA 3R enclosure.
- Suitable for operation in ambient temperatures from -40°C to +70°C, and altitudes to 13,000 feet (5000 meters).
- Prototype tested; UL, CSA, and CE compliant.

AmpSentry AC Protection

- Overcurrent and short circuit shutdown
- Overcurrent warning
- Single & 3-phase fault regulation
- Over and under voltage shutdown
- Over and under frequency shutdown
- Overload warning with alarm contact
- Reverse power and reverse Var shutdown
- Excitation fault

Engine Protection

- Overspeed shutdown
- Low oil pressure warning and shutdown
- High coolant temperature warning and shutdown
- High oil temperature warning (optional)
- Low coolant level warning or shutdown
- Low coolant temperature warning
- High and low battery voltage warning
- Weak battery warning
- Dead battery shutdown
- Fail to start (overcrank) shutdown
- Fail to crank shutdown
- Redundant start disconnect
- Cranking lockout
- Sensor failure indication

Operator Interface

- OFF/MANUAL/AUTO mode switch
- MANUAL RUN/STOP switch
- Panel lamp test switch
- Emergency Stop switch
- Alpha-numeric display with pushbutton access, for viewing engine and alternator data and providing setup, controls, and adjustments
- LED lamps indicating genset running, not in auto, common warning, common shutdown
- (5) configurable LED lamps
- LED Bargraph AC data display (optional)

Alternator Data

- Line-to-line and line-to-neutral AC volts
- 3-phase AC current
- Frequency
- Total and individual phase kW and kVA

Engine Data

- DC voltage
- Lube oil pressure
- Coolant temperature
- Lube oil temperature (optional)

Other Data

- Genset model data
- Start attempts, starts, running hours
- KW hours (total and since reset)
- Fault history
- Load profile (hours less than 30% and hours more than 90% load)
- System data display (optional with network and other PowerCommand gensets or transfer switches)

Voltage Regulation

- Integrated digital electronic voltage regulator
- 3-phase line to neutral sensing
- PMG (Optional)
- Single and three phase fault regulation
- Configurable torque matching

Control Functions

- Data logging on faults
- Fault simulation (requires InPower)
- Time delay start and cooldown
- Cycle cranking
- (4) Configurable customer inputs
- (4) Configurable customer outputs
- (8) Configurable network inputs and (16) outputs (with optional network)

Options

<table>
<thead>
<tr>
<th>Power Transfer Control</th>
<th>Key-type mode switch</th>
<th>Echelon LonWorks interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog AC Meter Display</td>
<td>Ground fault module</td>
<td>Digital input and output module(s) (loose)</td>
</tr>
<tr>
<td>Thermostatically Controlled Space Heater</td>
<td>Engine oil temperature</td>
<td>Remote annunciator (loose)</td>
</tr>
</tbody>
</table>
Engine
- 120/240 V, W coolant heaters
- 120/240 V, W lube oil heater
- Electronic governor

Cooling System
- Heat exchanger cooling
- Remote radiator cooling

Fuel System
- Flexible fuel connector
- Fuel strainer
- Dual fuel systems

Alternator
- 105°C rise alternator
- 125°C rise alternator
- 120/240 V, 100 W anti-condensation heater
- Single phase

Exhaust System
- GenSet mounted muffler
- Heavy duty exhaust elbow
- Slip on exhaust connection

Generator Set
- AC entrance box
- Batteries
- Battery charger
- Export box packaging
- PowerCommand Network
- Communication Module (NCM)
- Stage I housing w/silencer
- Stage II housing w/silencer
- Remote annunciator panel
- Spring isolators
- Weather protective enclosure with silencer
- 2 year standby warranty
- 5 year basic power warranty

Available Products and Services
A wide range of products and services is available to match your power generation system requirements. Cummins Power Generation products and services include:

- Diesel and Spark-Ignited Generator Sets
- Transfer Switches
- Bypass Switches
- Parallel Load Transfer Equipment
- Digital Paralleling Switchgear
- PowerCommand Network and Software
- Distributor Application Support
- Planned Maintenance Agreements
Warranty
All components and subsystems are covered by an express limited one-year warranty. Other optional and extended factory warranties and local distributor maintenance agreements are available. Contact your distributor/dealer for more information.

Certifications

CSA - The generator is CSA certified to product class 4215-01.

PTS - The Prototype Test Support (PTS) program verifies the performance integrity of the generator set design. Products bearing the PTS symbol have been subjected to demanding tests in accordance to NFPA 110 to verify the design integrity and performance under both normal and abnormal operating conditions including short circuit, endurance, temperature rise, torsional vibration, and transient response, including full load pickup.

See your distributor for more information

Cummins NPower LLC
875 Lawrence Drive
DePere, WI 54115
920.337.9750
Fax: 920.337.9746
www.cumminsnpower.com

Cummins and PowerCommand are registered trademarks of Cummins Inc.
AmpSentry is a trademark of Cummins Inc.
LonWorks is a registered trademark of Echelon

Important: Backfeed to a utility system can cause electrocution and/or property damage. Do not connect generator sets to any building electrical system except through an approved device or after building main switch is open.